What one can learn by Fluorescence Experiments on Polarity and Mobility in Biomembranes?

Martin Hof
What is fluorescence?

1852
Sir George Gabriel Stokes

Fluorescence is the emission of light by a substance that has absorbed light of a different (lower) wavelength.

Quinine in water
Why fluorescence for probing polarity?

- it provides information on the molecular environment of the fluorescent dye. Specifically, fluorescence of a dye is dependent on the polarity of the environment.

Dissolved in
a) Cyclohexane (unpolar)
b) Diethylether (medium polar)
c) Ethylacetat (polar)
Why fluorescence for probing polarity?

• it provides information on the molecular environment of the fluorescent dye. Specifically, fluorescence of a dye is dependent on the polarity of the environment.

Dissolved in
a) Cyclohexane (unpolar)
b) Diethylether (medium polar)
c) Ethylacetat (polar)
Emission spectra gets red-shifted by increase of solvent polarity.
Fluorescence provides information on the molecular environment of a fluorescent dye.

• A. Specifically, fluorescence of a dye is dependent on the polarity of the environment.

“Red-shift due to increase in polarity”

• B. Fluorescence of a dye can give information on the viscosity of the dye’s environment.

“Blue-shift due to increase in viscosity”
Increase of solvent polarity leads to red-shift.

Increase of viscosity leads to blue-shift.

Red and blue-shifts are solvent effects and are based on the solvent relaxation process.
What is **solvent relaxation**: “photophysics of dye after excitation”

Dye excitation leads to an instantaneous change in the dye’s dipole moment → dipoles of the solvent molecules have to react to this non-equilibrium situation and start to reorient → this reorientation leads to stronger dipole-dipole interactions and decreases the energy of the system (relaxation) → **red-shift**
Red-shifts in steady-state fluorescence spectra

Solvent relaxation is faster than fluorescence

Jablonski diagram:

Franck-Condon state

Absorbed

Ground state

Relaxed state

Less polar solvent

More polar solvent

Stokes shift

Absorption

Fluorescence
Solvent relaxation is faster than fluorescence: increase of polarity of solvent leads to stronger dipole-dipole interactions and thus to a decrease of the energy of the relaxed state. Almost all dye molecules are fluorescing from this state, thus increased solvent polarity leads to red-shift
Blue-shifts in steady-state fluorescence spectra

Increasing viscosity slows down the SR process. If then the SR occurs on the same time scale as the fluorescence (nanoseconds) → non-relaxed states are significantly contributing to fluorescence:
Solvent relaxation is on the same time scale than fluorescence: increase of viscosity leads to increasing fluorescence contributions of non-relaxed states and thus to an increasing blue-shift

in THF
Qualitative connection between fluorescence emission of a dye and polarity/viscosity of the dye’s molecular environment

Quantitative?
Quantitative monitoring the solvent relaxation process:
Time-resolved fluorescence spectroscopy

kinetics (τ_{SR}): polarity

Red-shift $\Delta \nu$: polarity

Franck-Condon state

Absorption

Ground state

Relaxed state

Absorption

Fluorescence

Fluorescence

Fluorescence
SR is monitored by “time-resolved fluorescence emission spectra”

\[\Delta \nu = \nu(t=0) - \nu(t=\infty) \]
Time-dependent Stokes shift $\Delta \nu$

- **Normalized intensity**
 - Wavelength (nm)
 - Time (ns)
 - Position of TRES maxima $
u$ (cm$^{-1}$)

- **Position of TRES maxima** $\nu = \nu(0) - \nu(\infty)$

- **Graphs**
 - Different time points: 0.1 ns, 2.0 ns, 5.0 ns, 8.0 ns
 - Graph showing normalized intensity vs. wavelength (nm)
 - Graph showing position of TRES maxima vs. time (ns)
Quantitative monitoring the solvent relaxation process: Time-resolved fluorescence spectroscopy

Red-shift $\Delta \nu$: polarity
Time-dependent Stokes shift $\Delta \nu$ gives directly information about the micro-polarity

- $\Delta \nu$ is directly proportional to the polarity function F

- example:
 - C_1OH: $F = 0.71$; $\Delta \nu = 2370 \text{ cm}^{-1}$
 - C_5OH: $F = 0.57$; $\Delta \nu = 1830 \text{ cm}^{-1}$

$$\Delta \nu = (\varepsilon_s - 1) / (\varepsilon_s + 2) - (n^2 - 1) / (n^2 + 2)$$

Dependence of SR kinetics on the solvent

Kinetics: Normalisation of Stokes shift $\nu(t)$: $C(t) = (\nu(t) - \nu(\infty)) / \Delta \nu$

$$C(t) = \frac{\nu(t) - \nu(\infty)}{\nu(0) - \nu(\infty)}$$

$$\Delta \nu = \nu(0) - \nu(\infty)$$

Normalized intensity vs. wavelength (nm)

Normalized intensity vs. time (ns)

Position of TRES maxima vs. time (ns)
Dependence of SR kinetics on the solvent

Kinetics: Normalisation of Stokes shift $\nu(t)$: $C(t) = (\nu(t) - \nu(\infty))/\Delta\nu$

Summarised from contributions by M. Maroncelli (1993-1997)
Kinetics of the SR is related to the viscosity of the microenvironment.

\[\frac{1}{T} \sim 10^{-3} \text{K}^{-1} \]

- \(\tau_{\text{Phosp}} = 0.25 \text{ s} \)
- \(\tau_{\text{CT}} = 4 \mu \text{s} \)
- \(\tau_{\text{Fluor}} = 20 \text{ ns} \)

- \(T_g = 92 \text{ K} \)

Dyes in THF 90-170 K

Probed by:
- \(T_1 \rightarrow T_0 \) Phosphorescence
- Charge-Transfer Emission
- \(S_1 \rightarrow S_0 \) Fluorescence

Characterisation of SR by time-resolved fluorescence emission spectra (TRES) gives directly information on viscosity (kinetics) and polarity ($\Delta \nu$) of the probed micro-environment of the dye
What can we learn by Fluorescence Solvent Experiments on Polarity and Mobility in Biomembranes?
The “Fluid Mosaic” Model of a cell membrane and unilamellar vesicles as their model system

- The cell membrane is a two-dimensional mosaic, the structure of which is given by phospholipids forming a phospholipid bilayers

- Unilamellar vesicles serve as a model system
How does hydration and mobility change from the water phase towards the “oil” phase?

Vesicle

“bulk” water: sub-ps
External interface
Headgroup region
hydrophobic backbone (“oil”)

Vesicle
Fluorescent dyes are defined localized within the bilayer. The fluorescence signal can be correlated with a z-position within bilayer backbone, headgroup, and external interface.
Information obtained from TRES

\[\Delta \nu = \nu(0) - \nu(\infty) \]

\[\tau = \int_{0}^{\infty} C(t) \, dt \]

\[C(t) = \frac{\nu(t) - \nu(\infty)}{\nu(0) - \nu(\infty)} \]
Ions in model lipid membranes:
Do ions with same charge interact differently?

K^+ versus Na^+
In order to get atomistic understanding also Cs^+

Laurdan TRES:
How does hydration and mobility of the sn_1 acyl-group change by addition of different cations?
a) Weak cation packing effects in neutral bilayers; no ion specificity

b) Specific cation effects in (negatively charged) Phosphatidyl-Serine containing bilayers

\[\Delta \nu \text{ (cm}^{-1}) \]

\[\tau \text{ (ns)} \]

\[\text{POPC, POPC + 20 mol% POPS} \]

Na\(^+\) is dehydrating and packing the glycerol level more than Cs\(^+\) and K\(^+\)
MD simulations: Na$^+$ is bridging the carbonyls and thus packing the glycerol level more than the other cations

Bridging effect is much stronger for Na$^+$ than for the other cations in POPC/POPS bilayers
MD simulations: Na\(^+\) is bridging the carbonyls and thus dehydrating glycerol level more than the other cations.

Please note the analogy to the \(\Delta \nu\) values determined for this system!
Summary to **strong ion effects** observed by solvent relaxation experiments and explained by MD simulations

- Cations strongly influence probed hydration and mobility at the glycerol level when PS is present.

- Small cations are attracted by negative charge; but then bridge the carbonyl groups leading to increased packing and decreased hydration. As larger the cation as smaller the bridging tendency.

- There is a strong difference between Na^+ and K^+.
B. “Truncated” oxidized phospholipids in lipid membranes

Oxidative Stress

Series of products, physiological relevance do have e.g.:
Do those truncated lipids (oxPL) change Hydration and mobility profiles?

Distance from the center of DOPC bilayer for:
- Patman – 10.4 Å
- Laurdan – 11.4 Å
- DTMAC – 15.3 Å
Relative changes in $\Delta \nu$ (hydration) induced by incorporation of oxPL

- **Sinusoidal modification of hydration profile:**
 - Phosphate-groups become less hydrated
 - Acyl-groups become more hydrated
 - Backbone becomes less hydrated

Franck-Condon state

Absorption

Ground state

Relaxed state

Fluorescence

Fluorescence
$\Delta \nu = \nu(0) - \nu(\infty)$

$C(t) = \frac{\nu(t) - \nu(\infty)}{\nu(0) - \nu(\infty)}$

τ (ns)

$\Delta \nu$ (cm$^{-1}$)

K$^+$ versus Na$^+$

POPC

POPC + 20 mol% POPS

DOPC

Laurdan

16-AP

9-AS

PoxnoPC

Patman

PazePC

Dtmac

Distance from the bilayer centre (Å)
Acknowledgements

The J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic (since 1997)

My group at the J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic. In particular connected with this lecture Drs. P. Jurkiewicz, J. Sýkora, A. Olzynska, and L. Cwiklik

Collaborating scientists, like e.g. J. Damborsky (Brno), W. Hermens (Maastricht), P. Kinnunen (Helsinki), J. Enderlein (Goettingen), A. Hermetter (Graz), K. Prochazka, P. Svoboda, and D. Staněk (all Prague). In particular connected with this lecture P. Jungwirth

Recent funding by MSMT, GACR, GAAV, ESF, ASCR