Rastrovací mikroskopie: naše oko do světa atomů.

Pavel Jelínek Fyzikální Ústav AV ČR, v.v.i. jelinekp@fzu.cz nanosurf.fzu.cz

NANOSURF LAB

Outline

- Introduction
- STM
- AFM
- What next?

Outline

- Introduction
- STM
- AFM
- What next?

The Scale of Things – Nanometers and More

Things Natural

Ant

~ 5 mm

Flyash

~ 10-20 um

Dust mite 200 µm

Human hair ~ 60-120 µm wide

DNA

~2-12 nm diameter Atomaofailicon spacing "tenths of nm

Things Manmade

Hes of Hamil Lineage Science (Blow of Science & Just, 2016) Version of the Act, 1912

Nanoscale electronics

Building blocks: atomic clusters, molecules & atoms

...we need to see, recognize & assemble them

Spatial resolution vs. time

Scanning Probe Microscopy

STM

Analogy of gramophone

tunneling current occurs at very short distances when the voltage is applied between the probe and the sample

provides atomic resolution of surfaces & their electronic structure oscillating probe contacting ("touching") the surface changing oscillation frequency/amplitude

□ point to point differences in oscillation frequency/amplitude make an image contrast.

Distance between tip and sample

Basic operation modes

AFM

STM

x[nm]

Outline

- Introduction
- STM
- AFM
- What next?

Birth of STM

G. Binning et al, Phys. Rev. Lett. 49, 57-61 (1982)

Nobel Prize for Physics 1986: G. Binnig and H. Rohrer

7 × 7 Reconstruction on Si(111) Resolved in Real Space G. Binning et al, Phys. Rev. Lett. 50, 120–123 (1983)

Surface Studies by Scanning Tunneling Microscopy

G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel IBM Zurich Research Laboratory, 8803 Rüschlikon-ZH, Switzerland (Received 30 April 1982)

Au(110) surface

Mechanism of STM: tunneling

exponential decay in the barrier $\psi(r) = \psi(0) \exp(-\kappa r)$ $\kappa = \frac{\sqrt{2m_e(\phi-E)}}{\hbar}$

probability to find e- behind the barrier $w(r) = |\psi(r)|^2 = |\psi(0)|^2 \exp(-2\kappa r)$ current proportional to the probability

 $I \approx \sum_{E_n} |\psi_n(0)|^2 \exp(-2\kappa r)$

PDOS:
$$ho(z,\omega) = rac{1}{\epsilon}\sum_{E_n}|\psi_n(z)|^2$$

the current depends exponentially on distance -> key for the atomic resolution

 $I \approx V \rho_s(0, E_F) \exp(-2\kappa d) \approx V \rho_s(0, E_F) \exp(-1.025\sqrt{\phi}d)$

Atomic scale images

Au(110) surface

Si(111)-(7x7) surface

C. Binning et al, Phys. Rev. Lett. 47, 57 (1982)

exp. & theory: Si(112)-(6x1)/Ga surface

P.C. Snijder et al, Phys. Rev. B 72, 125343 (2005)

O/Ru(0001) & O/Pd(111)

F. Calleja et al, Phys. Rev. Lett. 92, 206101 (2004) J.M. Blanco et al Phys. Rev. B 71, 113402 (2005)

Imaging molecular orbitals

L. Gross et al, Science 325, 1110 (2009)

Spin polarized STM

Spin resolution on atomic scale

Complex spin structures

Realizing All-Spin-Based Logic Operations Atom by Atom

A. A. Khajetoorians et al, Science 332, 1062 (2011)

Atomic Manipulation

- lateral
- vertical

- induced by inelastic tunneling
- induced by electric field

V_{bias}

Lateral Manipulation

L. Bartles et al, PRL **79**, 697 (1997)

Vertical Manipulation

- induced by
 - electric field
 - inelastic tunneling processes
 - mechanical contact

Site Specific Displacement of Si Adatoms on Si(111)-(7x7)

B.C. Stipe et al, Phys. Rev. Lett. 79, 4397 (1997).

Inelastic electron spectroscopy

Interaction between electron and vibration modes opens new transmission channels

Reference missing!!!

Dissociation by inelastic current

B.C. Stipe et al Phys. Rev. Lett. 78, 4410 (1997).

Chemistry by STM

Complex chemical (Ullman) reaction

Hydrogenation of a Single Molecule

S. Katano, et al. Science 316, 1883 (2007)

S. W. Hla, et al. Phys. Rev. Lett 85, 2777 (2000)

Molecular imaging/switching by means of STM

P. Liljeroth et al, Science 317, 1203 (2007)

DNA sequencing using current The tunneling current senses different DNA base pairs when functionalized tip used

S. Lindsay, et al. Recognition tunneling. Nanotechnology 21, 262001 (2010). S.Huang, et al, Nature Nanotechnology 2010, 5, 868-873 (2010).

STM & Astronomy

PAHs and related species can be efficiently produced on the surface of SiC grains upon high-temperature exposure to atomic hydrogen in the interstellar medium.

in circumstellar environments,
 SiC grains are covered by a
 graphene layer

• H-etching under UHV conditions disrupts graphene

STM & Quantum phenomena

SPM is not only based on quantum phenomena but it also provides the direct access to nanoscale where quantum phenomena emerge.

M. F. Crommie et al Nature 363, 524 (1993). H. C. Manoharan et al Nature 403, 512 (2000). Ch. Moon et al Nature Physics 4, 454 – 458 (2008)

Outline

- Introduction
- STM
- AFM
- What next?

AFM

- design & roadmap
- atomic scale images
- atomic manipulation

AFM

- design & roadmap
- atomic scale images
- atomic manipulation

1986: birth of AFM

VOLUME 56, NUMBER 9

PHYSICAL REVIEW LETTERS

3 MARCH 1986

Atomic Force Microscope

G. Binnig^(a) and C. F. Quate^(b) Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305

and

Ch. Gerber^(c) IBM San Jose Research Laboratory, San Jose, California 95193 (Received 5 December 1985)

AFM World

Main obstacles of dAFM

- Experimental parameters jump-to-contact instabili •
 - interplay between A,

The spring constant of the cantilever k

 f_{o}

•

TABLE I. Operating parameters of various FM-AFM experiments: *, early experiments with nearly atomic resolution, experilarge be ments with standard parameters (classic NC-AFM) on semiconductors, metals, and insulators; **, small-amplitude experiments; f ***, internal cantilever damping calculated from $\Delta E = 2\pi E/Q$. When Q is not quoted in the original publication, a Q value of 50 000 is used as an estimate.

			attr		Ŀ	6	Af	A	~	k A	F	AFee			~
		1		Year	N/m	kHz	Hz	nm	fN√m	nN	keV	eV***	Sample	Ref.	
•		lar	ge si	1994*	2.5	60.0	-16	15.0	-1.26	37.5	1.8	0.06	KCI(001)	Giessibl and Trafas (1994)	
		_	- wea	1994*	2.5	60.0	- 32	3.3	-0.29	8.25	0.1	0.4	Si(111)	Giessibl (1994)	~ ~
				1995	17.0	114.0	-70	34.0	-66.3	544	61	14	Si(111)	Giessibl (1995)	f ot %
•				1995	43.0	276.0	- 60	40.0	-75.6	1720	215	27	Si(111)	Kitamura and Iwatsuki (1995)	
			wea	1995	34.0	151.0	-6	20.0	-3.91	680	42	5	InP(110)	Sugawara et al. (1995)	mnle V
				1996	23.5	153.0	-70	19.0	-28.8	447	27	3.3	Si(111)	Lüthi et al. (1996)	mpie v _i
			n-mo	1996	33.0	264.0	-670	4.0	-23.6	132	12	1.45	Si(001)	Kitamura and Iwatsuki (1996)	
		rior		1996	10.0	290.0	- 95	10.0	-3.42	100	3.1	0.4	Si(111)	Güthner (1996)	<u>~</u>
			more	1997	30.0	168.0	-80	13.0	-21.9	390	16	2	NaCl(001)	Bammerlin et al. (1997)	
				1997	28.0	270.0	-80	15.0	-15.7	420	20	2.5	TiO ₂ (110)	Fukui et al. (1997)	
current I				1997	41.0	172.0	-10	16.0	-4.96	654	33	4	Si(111)	Sugawara et al. (1997)	amplituda
	. ₹	1	∝ exp(– cons	1999	35.0	160.0	-63	8.8	-10.1	338	10	1.4	HOPG(0001)	Allers et al. (1999a)	
	i I	I(d)		1999	36.0	160.0	-60.5	12.7	-18.1	457	18	2.3	InAs(110)	Schwarz et al. (1999)	regulator
	D			1999	36.0	160.0	- 92	9.4	-19.8	338	10	1.2	Xe(111)	Allers et al. (1999b)	+
	3	\		1999	27.4	152.3	-10	11.4	-2.2	312	11	1.4	Ag(111)	Minobe et al. (1999)	demo-
				2000	28.6	155.7	-31	5.0	-4.1	143	2.2	0.04	Si(111)	Lantz et al. (2000)	ator
				2000	30.0	168.0	-70	6.5	-6.6	195	4.0	0.5	Cu(111)	Loppacher et al. (2000)	
	ŀ			2001	3.0	75.0	- 56	76	-46.9	228	54.1	7	Al ₂ O ₃ (0001)	Barth and Reichling (2001)	Λf
		1		2002	24.0	164.7	-8	12.0	-1.5	288	2.2	1.4	KCl _{0.6} Br _{0.4}	Bennewitz, Pfeiffer, et al. (2002)	
		1		2002	46.0	298.0	-20	2.8	-0.46	129	1.1	0.13	Si(111)	Eguchi and Hasegawa (2002)	egulator
		i		2000**	1800	16.86	-160	0.8	-387	1440	3.6	11	Si(111)	Giessibl et al. (2000)	protor
			dista	2001**	1800	20.53	85	0.25	+29.5	450	0.4	1	Si(111)	Giessibl, Bielefeldt, et al. (2001)	

dAFM includes more complicated control unit than STM

dynamic Atomic Force Microscope

dAFM measures the interaction between the tip and the sample by means of the dynamic properties of the cantilever carrying the tip

FM-AFM

• obtain molecular resolution images of biological samples in ambient conditions.

• atomic scale resolution in UHV

R. García and R. Perez Surf. Sci. Rep. 47, 197 (2002); F.J. Giessibl Rev. Mod. Phys. 75, 958 (2003).

dAFM: signal detection

quartz

310

320

Photo diode

qPlus sensor

-100

(b)

280

290

300

T [K]

F. J. Giessibl Appl. Phys. Lett. 76, 1470 (2000)

oscillation source: quartz tuning fork from watches

□ conductive tip: both current and frequency shift

□ small amplitude 0.1–10Å; sensible enough to detect the tunneling current

high spring constant; reduced configuration space of parameters

movement of cantilever sensed by laser beam deflection

□ silicon-based tip: chemically active

(a)

 \Box many variants for parameter (k,f_o,A etc.)

Forces in AFM

Total force is composed by several both long-range and short-range components

 $F_{chem} \equiv$ Short range chemical interaction: attractive (bonding) or repulsive (Pauli) depending on the distance \Rightarrow Quantum Mechanical calculation 37

Atomic resolution in FM-AFM:Si(111)-7x7

F.J. Giessibl, Science 267, 68 (1995)

50

39

Force Site Spectroscopy: experiment & theory

M. Lantz et al, PRL 84, 2642 (2000) M. Lantz et al, Science 291, 2580 (2001)

Tip-surface interactions R. Pérez et al , PRL 78, 678 (1997)

AFM Roadmap

Status of dAFM

- true atomic resolution of arbitrary surface & in liquids
- 3D measurements of atomic forces
- force and energy dissipation control at atomic scale
- measurements of mechanical response (tribology)
- mechanical manipulation of individual atoms
- mechanical assembly atom by atom
- chemical & spin atomic scale resolution

AFM

- design & roadmap
- atomic scale images
- atomic manipulation

Imaging contrast at surfaces

Ionic surface KBr(001)

Semiconductor surface

Si(100)-2x1

□ tip dependent contrast frequently changed

□ image contrast: long-range coulombic interaction between charged atoms & the chemical interaction

point charge approx. questionable: we need charge distribution from quantum mechanical treatment

R. Bechstein et al Nanotechnology 20, 505703 (2009).

less tip dependent contrast

□ image contrast: short range chemical interaction between apex and surface atom

quantum mechanics has to be used to image modeling

Who is there?

F-z spectroscopy: the chemical force

Y. Sugimoto et al Phys. Rev. B 73 205329 (2006)

P. Pou et al Nanotechnology 20 264015 (2009)

- tip-sample interaction mainly determined by apex and surface atoms
- isovalent impurities do not affect the mechanical response of AFM probe

Force and the chemical identification

100% 78% 62%

100% 79% 59%

Pb 100% 71% 54%

 Si

 \mathbf{Sn}

Si

Sn

Pb

100% 82% 67%

100% 84% 68%

100% 82% 64%

Y. Sugimoto et al, Nature 446, 64 (2007) *M. Setvin et al* ACS Nano 6, 6969 (2012)

Molecular identification

High resolution images of molecules by means of nc-AFM

L. Gross, et al , Science 325, 1110-1114 (2009).

Organic structure determination using atomic-resolution scanning probe microscopy.

NMR and mass spectrometry do not succeed in the unambiguous determination of the chemical structure of unknown compounds.

L. Gross, et al , Nature chemistry 2 (10), 821-5 (2010).

Tracking chemical reactions

Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions

D.G. de Oteyza et al, Science 340, 1434-1437 (2013).

Beyond standard imaging: 3D maps

NiO(100)

H. Hölscher et al, Appl. Phys. Lett. 81, 4428 (2002)

NaCl(100) 0.4 potential energy 20 0.3 z position (nm) potential site A site B 24 0.2 energy (eV) 26 0.1 1 30 0.0 2.0 0.0 0.5 1.0 1.5 x position (nm)

A. Schirmeisen et al, Phys. Rev. Lett. 97, 136101 (2006)

Sensing lateral forces

Lateral force with atomic resolution measured on semiconductor surface

Understanding fundamental processes of friction on atomic scale

AFM

- design & roadmap
- atomic scale images
- atomic manipulation

Atom manipulation using force

D.M. Eigler and E.K. Schweizer Nature 344, 524 (1990)

Standard lateral manipulation

Y. Sugimoto, et al, PRL 98 106104 (2007).

Standard vertical manipulation

Y. Sugimoto, et al, Nature materials 4 156 (2005).

Interchange vertical manipulation

Interchange lateral manipulation

Atomic pencil: 'Si' @ RT by Si atoms

Sn→Si

Insight from theory

Y. Sugimoto et al Science 332, 413 (2008)

Outline

- Introduction
- STM
- AFM
- What next?

Atomic resolution in liquids by means of nc-AFM

Mica in liquids

SAM on Au surface

T. Fukuma et al Appl. Phys. Lett. 86, 034103 (2005);

Antibody molecule on mica

H. Yamada group, Kyoto University, Japan

Microtubule in liquid

T. Fukuma group, Kanazw University, Japan

Feeling force and current together

VOLUME 57, NUMBER 19

PHYSICAL REVIEW LETTERS

10 NOVEMBER 1986

Experimental Observation of Forces Acting during Scanning Tunneling Microscopy

Experimental setup @ FZU

Simultaneous acquisition of Δf , I, ΔE as function of z distance @ RT

- Modified Omicron VT UHV AFM/STM^[1]
- Simultaneous AFM/STM @ RT without cross-talk^[1]
- Home built qPlus sensor ^[2] with improved performance^[3]
- Specs UHV LT-AFM/STM (August 2013)

VT AFM/STM (1000-40K)

Z. Majzik et al, Beilstein J. Of Nanotech. 3, 249 (2012).
 F.J. Giessibl , App. Phys. Lett. 70, 2529 (1997).
 J. Berger et al, Beilstein J. Of Nanotech. 4, 1 (2013).

LT AFM/STM (4K)

Different channels

Novel way to merge STM & nc-AFM into one instrument

nc-AFM

ઝ

Available techniques:

- tuning fork sensor
- length extension resonators
 control Si contilovers
- coated Si-cantilevers

tip approach

 $U_{BIAS} = 0.4 V, f_0 = 71096 Hz,$ k = 4354 N/m, $a_{osc} = 0.13 nm$

Force/current spectroscopy

Prospective applications

Probing nanostructures by Force and Current

Ultimate atomic resolution in SPM

Atomic contrast: graphene

Gold coated

cantilever Gold

S. Hembacher et al PNAS 100, 12539 (2003)

0.5 1.0 1.5 2.0 2.5

Molecular recognition on semiconductor surfaces

<|>

Δf

Z. Majzik et al ACS Nano 7, 2686 (2013)

Do STM and AFM provide a similar atomic contrast ?

Nanowires & molecular junctions

M. Frei et al NanoLett. 11, 1518 (2011). G. Rubio-Bollinger et al PRL. 87, 026101 (2001). J. Hone et al Science 325, 1084 (2009)

Fundamental relation between force and current at atomic scale

The relation driven by quantum degeneracy by frontiers orbitals

M. Ternes et al Phys. Rev. Lett. 106, 176101 (2011). P. Jelínek et al, JPCM 24, 084001 (2012). Y. Sugimoto et al Phys. Rev. Lett. 111, 106803 (2013).

Basic principles of KPFM Working scheme Bias vs. frequency shift Δf V_{CPD} $F_{el} = -\frac{1}{2} \frac{\partial C}{\partial z} [V_s - V_{CPD}]^2$

E_{Fermi}

 $\mathsf{E}_{\mathsf{Fermi}}$

e

Vacuum Work function difference

 $V_{s} \xrightarrow{(c) p_{t}} A_{u}$

M. Nonnenmacher et al, APL 58, 2921 (1991).

True atomic resolution

S. Sadewasser et al, PRL 113, 266103 (2009).

- Charge states at atomic scale L. Gross et al, Science, 324, 1428 (2009).
 - Charge distribution in molecules F. Mohn et al, Nature Nano. 7, 227 (2012).

Motivation

STM

curren Force

S.Y. Quek et al, Nature Nano 4, 230 (2009).

Understanding of forces acting during formation of molecular junction on semiconductor surface

2D mapping in V,z space

- constant height STM @ high bias V_o to resolve molecules
- approx 40 Δ f-z curves @ different biases V_i (Δ V=0.1 eV)
- acquisition loop:
 - Δf -z curve @ given bias V_i
 - constant height scan @ V_o
 - x,y set point adjustment tracking molecule
- total time > 2 hours
- no tip changes during acquisition

Thank you for your attention