Back to the list of articles

27.10.2010

Ženíšek Alexander

Prof., RNDr., DrSc.
Born January 29, 1936 in Brno, † 2020 

  • Mathematics, the finite element method
  • Member of Learned Society since 1994 (Founding member)

Educational and professional preparation:

  • 1954, graduate, eleven-year secondary school, Brno-Husovice;
  • 1954-1959, physics study, Faculty of Natural Science, J. E. Purkyně University
    (FS JEPU), Brno;
  • 1960-1964, external study of mathematics, FD JEPU;
  • 1967, RNDr. (mathematics);
  • 1968, CSc. (mathematics);
  • 1969, Associate Professor of physics, Faculty of Mechanical Engineering, Brno University of Technology (FME BUT);
  • 1978, Associate Professor of approximate and numerical methods;
  • 1981, DrSc. in approximate and numerical methods;
  • 1986, Full Professor of mathematics in approximate and numerical methods

Employment and academic positions:

  • 1959-1962, assistant lecturer, Department of Physics, FME BUT;
  • 1962-1972, lecturer there;
  • 1972-1975, principal scientist, Laboratory of Computers, BUT (this institution was later renamed the Area Computer Centre at BUT);
  • 1976-1981, senior scientist there;
  • 1981-January 1990, senior scientist there;
  • February 1990-present, Professor of mathematics, Institute of Mathematics,
    FME BUT (1994-2003 Director of this Institute);
  • 1993, founded and later developed professional five-year study of Mathematical Engineering at FME BUT.

Notable awards:

  • 2001, Gold Medal, FME BUT (or lifelong contributions to the development of this faculty)

Selected publications:

  • A. Ženíšek: Interpolation polynomials on the triangle. Numer. Math. 15, 283-296 (1970)
  • A. Ženíšek: Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7, 334-351 (1973)
  • A. Ženíšek: A general theorem on triangular finite Cm-elements. RAIRO Numer. Anal. 8, 119-127 (1974)
  • Kolář V., Kratochvíl J., Leitner F., Ženíšek A.: Berechnung von Flächen- und Raumtrag-werken nach der Methode der finiten Elemente. Springer Verlag, Wien, New York-Prague 1975 (425 pp.)
  • A. Ženíšek: Curved triangular finite Cm-elements. Apl. Mat. 23, 346-377 (1978)
  • A. Ženíšek: Discrete forms of Friedrichs’ inequalities in the finite element method. RAIRO Numer. Anal. 15, 265-286 (1981)
  • Feistauer M., Ženíšek A.: Finite element solution of nonlinear elliptic problems. Numer. Math. 50, 451-475 (1987)
  • A. Ženíšek: Finite element variational crimes in parabolic-elliptic problems. Part I. Nonlinear schemes. Numer. Math. 52, 343-376 (1989)
  • A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London 1990 (422 pages)
  • A. Ženíšek: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58, 51-77 (1990)
  • A. Ženíšek: Variational problems in domains with cusp-points. Appl. Math. 38, 381-402 (1993)
  • M. Vanmaele, A. Ženíšek: External finite element approximations of eigenvalue problems. Math. Model. Anal. Numer. 27, 565-589 (1993).
  • M. Vanmaele, A. Ženíšek: The combined effect of numerical integration and approximation of the boundary in the finite element method for eigenvalue problems. Numer. Math. 71, 109-122 (1995).
  • A. Ženíšek, M. Vanmaele: The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math. 71, 253-273 (1995).
  • A. Ženíšek: Maximum-angle condition and triangular finite elements of Hermite type. Math. Comput. 64, 929-941 (1995)
  • A. Ženíšek: Finite element variational crimes in the case of semiregular finite elements. Appl. Math. 41, 367-398 (1996).
  • A. Ženíšek: Surface Integral and Gauss-Ostrogradskij Theorem from the Viewpoint of Applications. Appl. Math. 44 (1999), No.3 (separate number, 73 pp.)
  • A. Ženíšek: On a generalization of Nikolskij’s extension theorem in the case of two variables. Appl. Math. 48, 367-404 (2003)
  • A. Ženíšek: Extensions from the Sobolev spaces satisfying prescribed Dirichlet boundary conditions. Appl. Math. 49, 405-413 (2004)
  • A. Ženíšek: Sobolev Spaces and Their Applications in the Finite Element Method. VUTIUM, Brno 2004 (525 pages)